Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Biomedical Engineering ; (6): 1263-1266, 2006.
Article in Chinese | WPRIM | ID: wpr-331434

ABSTRACT

With the sulfate as the materials and NaOH as precipitator, Mn(0.4)Zn(0.6)Fe2O4 nanoparticles were produced, which are proved to be spinel Mn-Zn ferrite analyzed by X-ray diffraction(XRD). Their shapes are approximately global examined by transmission electron microscopy(TEM) and their average diameter is 50 nm measured with image analysis-system. The Curie temperature was measured and in vitro heating test in a alternating magnetic field was carried out. The results show that the Curie temperature is 105. 407 degrees C, While its magnetic fluid could rise to 43 degrees C - 47 degrees C due to different concentration in a alternating magnetic field. The result provide theoretical and practical evidence to select an appropriate material and concentration for tumor


Subject(s)
Humans , Electromagnetic Fields , Ferric Compounds , Chemistry , Hyperthermia, Induced , Manganese Compounds , Chemistry , Metal Nanoparticles , Chemistry , Microscopy, Electron, Transmission , Neoplasms , Therapeutics , X-Ray Diffraction , Zinc Compounds , Chemistry
2.
Journal of Biomedical Engineering ; (6): 809-813, 2006.
Article in Chinese | WPRIM | ID: wpr-320478

ABSTRACT

Mn0.5Zn0.5Fe2O4 nano-particles were prepared by the chemical co-precipitation, their characteristics were observed with transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermal analysis system, and etc. The temperature changes of the nano-particles of Mn0.5Zn0.5Fe2O4 and its magnetic fluid explored in radiofrequency(RF,200 KHz, 4 KW) were measured. The proliferation ratio of L929 cells cultured in soak of Mn0.5Zn0.5Fe2O4 nano-particles were observed. The experiment indicates that the magnetic particles were about 40 nm diameter in average, round, had strong magnetism, and were proved to be consistent with the standard data of chart of XRD. Its magnetic fluid exposed to RF could be heated up to temperature range from 40 degrees C to 51 degrees C due to the amount of the magnetic nano-particles and intensity of the alternating magnetic field. Magnetic nano-particles were found to have no obvious cytotoxicity to L929 cells.


Subject(s)
Animals , Mice , Cell Line , Ferrous Compounds , Hyperthermia, Induced , Magnetics , Therapeutic Uses , Manganese , Materials Testing , Nanostructures , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL